
AppalLOCATE: A Lost and Found Solution

A Thesis
by

DEREK CLARK WILSON

Submitted to the Graduate School
Appalachian State University

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

May 2023

Department of Computer Science

AppalLOCATE: A Lost and Found Solution

A Thesis
by

DEREK CLARK WILSON
May 2023

APPROVED BY:

James B. Fenwick, Jr., Ph.D.
Chairperson, Thesis Committee

Cindy Norris, Ph.D.
Member, Thesis Committee

Mark Hills, Ph.D.
Member, Thesis Committee

Rahman Tashakkori, Ph.D.
Chairperson, Department of Computer Science

Marie Hoepfl, Ed.D.
Interim Dean, Cratis D. Williams School of Graduate Studies

Copyright © 2023 by Derek Clark Wilson
All Rights Reserved

Abstract

AppalLOCATE: A Lost and Found Solution

Derek Clark Wilson
B.S., Appalachian State University
M.S., Appalachian State University

Chairperson: James B. Fenwick, Jr., Ph.D.

AppalLOCATE is a lost and found application currently in beta release to select offices at

Appalachian State University. AppalLOCATE comprises three interconnected components of

a mobile application, a web application, and a cloud-based storage container. Faculty, staff, and

students can employ a user interface to report found items or search items found and reported by

others. The application includes a contextualized search function, and incorporates a proximity

algorithm to aid in item collection. Reported items can be tagged for easy discovery, GPS

location is used to monitor how close a user is to an item, and mobile users can snap a picture

of an item they found. This thesis describes the design and development decisions, and explains

several expected use cases. Results from a small focus group are also presented.

iv

Acknowledgements

I am so grateful for everyone in my life that has supported me during this journey. Working

with Dr. Fenwick over the past two years has been a true pleasure, and I truly believe that this

thesis serves as a culmination of all of the effort we have put forth in that time. Thank you

for all of the brainstorming sessions, suggestions, and patience, and I hope this project fulfilled

your initial expectations from when it was just an idea on your whiteboard.

I am also extremely grateful to my friends and family for being there for me during the

writing process. Anytime I got stressed or discouraged, they were right there to help pick me

back up. I would not have been able to accomplish this without you all, so I hope you can take

pride in this accomplishment with me. Thank you from the bottom of my heart.

v

Table of Contents

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . x

I Introduction . 1

II Background . 3

A Proximity Tracing . 3

B Search Engines . 5

1 Integrated Storage & Search . 5

2 Separated Storage & Search . 5

C Cross-Platform Development . 7

1 Separate Native Applications . 7

2 Reactive Websites . 7

3 Progressive Web Apps . 8

4 Cross-Platform Native Apps . 8

III Design & Implementation . 10

A Website UI Design Changes . 10

1 Logo Enhancements . 10

2 Item List Edits . 12

3 Search Bar . 14

B Typesense & Searching . 15

C Web Configuration . 17

vi

1 Domain Setup . 17

2 Netlify Usage . 17

D Mobile Development . 19

1 Capacitor Usage . 19

2 AppalLOCATION . 20

3 App Deployment . 21

E Security & Authentication . 24

IV App Uses & Procedures . 26

A Standard Users . 26

B Office Users . 32

V User Feedback . 38

VI Conclusion . 39

A Future Work . 39

Bibliography . 43

Vita . 44

vii

List of Figures

1 New AppalLOCATE logo. 11

2 Old AppalLOCATE logo. 11

3 AppalLOCATE icon. 12

4 Old list design. 12

5 New list design on a narrow screen. 13

6 New list design on a wide screen. 13

7 Pagination bar. 13

8 Search bar. 14

9 Typesense server configuration. 15

10 Search function. 16

11 Example Typesense query. 16

12 Get location coords function. 20

13 Google Play Console checklist. 21

14 AppalLOCATE’s content rating. 22

15 Google Play Store listing. 23

16 Submit lost item listing. 27

17 Submit lost item page. 27

18 Lost item bulletin listing. 28

19 Lost item bulletin page. 28

20 Submit found item listing. 29

21 Submit found item page. 29

22 Standard user’s found items listing. 30

23 Standard user’s found items page. 30

24 AppalLOCATION button. 31

25 Item info listing. 31

viii

26 Item info page. 32

27 Login button. 32

28 Login page. 33

29 Office user’s found items listing. 33

30 Office user’s found items page. 33

31 Found item’s extended view. 34

32 Found item’s edit page. 35

33 Recovered items listing. 35

34 Recovered items page. 36

35 Reports listing. 36

36 Reports page. 37

37 Full item report. 37

ix

List of Tables

I Final Firebase Item Data . 14

x

I. INTRODUCTION

At Appalachian State University, there is no standard procedure for reporting or

recovering lost items. Expensive “found items” typically are taken to the police department

office or some other university office. Inexpensive items seem to collect in university offices,

classroom podiums, and lobby window sills, to name a few locations. Most university

department offices have a dedicated cardboard box to store such found items, but no reporting

or recovery mechanism is available. People looking for a lost item have to rummage through

these de facto collection points.

A functional prototype of a web application version of AppalLOCATE was presented in

partial fulfillment of an undergraduate Honors thesis [15]. AppalLOCATE is a reactive web

application built in Vue.js that seeks to solve the prevalent lost and found issue at Appalachian

State University. The application allows users to report found items, reporting their location

and other item information. That research included a survey of the community to gauge

interest in such an application, and the results showed that community members would be

likely to use the application to help others.

AppalLOCATE was conceived initially from the perspective of an individual losing or

finding an item, however, the requirements gathering and design activities described in [15]

shed light on other perspectives and a more holistic, campus deployment. In particular,

Appalachian Police Department Chief Stephensen expressed a desire for a campus policy

regarding lost and found item management and for several modifications to AppalLOCATE.

This thesis expands on the prior work.

1

Chapter II describes background information. Chapter III describes the design and

implementation of the mobile application, including all of the features of the application with

a focus on new, novel features. Ways to use AppalLOCATE at Appalachian State University

and other locations are discussed in Chapter IV, including a user manual on how the web and

mobile versions work. Chapter V details the feedback received about the new versions of

AppalLOCATE. Finally, Chapter VI concludes the thesis and discusses future work that could

be done to improve AppalLOCATE.

2

II. BACKGROUND

Research was performed to determine technologies that would be useful to improve

AppalLOCATE. Three notable improvements were identified that would better

AppalLOCATE users’ experiences. Proximity tracing was identified as a way to enable users

to find their items faster. A search engine was deemed necessary to allow users to search

AppalLOCATE’s inventory. Lastly, cross-platform development was explored to create a

mobile version of AppalLOCATE. These technologies are explored in this chapter.

A. Proximity Tracing

Proximity tracing is a technology that is used to track the close contacts of individuals

who have tested positive for a communicable disease, such as COVID-19. Decentralized

implementations of proximity tracing aim to address concerns around data privacy and

centralization of data in traditional proximity tracing systems. A protocol that aimed to

accomplish this decentralization of data was the Decentralized Privacy-Preserving Proximity

Tracing (DP-3T) protocol [14], which performed digital contact tracing (DCT) using

smartphones.

Apps using DCT technology were able to alert the user when they came in contact with

another person who had been exposed to COVID-19 within a certain time frame, and it did so

anonymously. The research and work to create DP-3T inspired Apple and Google to create a

shared framework named Google and Apple Exposure Notification (GAEN). An example of

an application that used this technology was SlowCOVIDNC, an app released on September

22, 2020, during the COVID-19 pandemic in North Carolina [11]. These efforts allowed for

3

an extra layer of safety during the pandemic that allowed people to gradually begin leaving

their homes again to return to work and school.

If two users were to both have the SlowCOVIDNC app downloaded on their devices,

both of them would be given what DP-3T calls an ephemeral ID (EphID). This EphID is

generated with a hash function and allows for the users to be referred to anonymously by

SlowCOVIDNC. When the devices of the two individuals (and presumably the individuals

themselves) are near each other, the application will record the proximity of the two. If they

are a certain distance from each other for a certain amount of time that is specified by the

protocol, their EphIDs will be stored on each other’s devices. If later that day, one of the

individuals were to report a positive COVID test to health services, their EphID would be

tagged with a positive test result and propagate to other devices that they were near. The other

individual would receive a notification that they were potentially in contact with someone

with COVID-19 and to take the necessary precautions.

This proximity tracing research is relevant due to inspiring a similar system with lost

items on campus that is incorporated into AppalLOCATE. Using the longitude and latitude of

the input items, which are gathered upon submission of a found item, the precise location of

the item can be stored. Using proximity tracing, the location of the device running

AppalLOCATE can be compared to the location of the items, allowing the app to take action

depending on how close the item is to the device. This DCT process has been named

AppalLOCATION. One example of using AppalLOCATION is sending the user a notification

to quickly check if an item is still in its reported found location as they walk by. The creation

of AppalLOCATION in AppalLOCATE is discussed further in subsection 2.

4

B. Search Engines

After thinking about AppalLOCATE as an inventory management system, it became

apparent that AppalLOCATE would need a robust system for storing and searching for items.

This system would need to key on multiple parts of the item such as the name, part of the

description, and even tags on the item. Research was conducted to find an efficient and

appropriate search engine, but also one that could be extended for use at other institutions.

1) Integrated Storage & Search: The easiest solution is to use built-in indexing from a cloud

storage system. Google’s Firebase was the initial cloud storage system for AppalLOCATE.

Unfortunately, Firebase does not have this indexing feature integrated with the realtime

database component [5]. Replacing Firebase with an indexing storage service would require

significant changes with the AppalLOCATE codebase. Other integrated solutions have a

significant financial cost associated with them. Switching to a different cloud storage system

for native indexing capabilities is discussed further in chapter VI.

2) Separated Storage & Search: Another approach is to augment the storage service with a

separate indexing service. Elasticsearch is a popular open-source search engine that is known

for its scalability, reliability, and efficiency [4]. It uses an inverted index, allowing for fast

search results, even with large data sets. Additionally, Elasticsearch supports a variety of

search features, such as keyword matching, full-text search, and faceted search. The challenge

lies in the implementation to join the search service with the storage service.

5

Algolia is a popular search engine that is known for its speed and accuracy [1]. The

engine uses a proprietary ranking algorithm that prioritizes the most relevant results, allowing

users to find what they’re looking for quickly and efficiently. One of the key features of

Algolia is its instant search capabilities, which allow for results to appear as the user types

their query. Additionally, Algolia offers a range of customization options, including the

ability to fine-tune relevance, use synonyms, and implement faceted search. However, the use

of Algolia in AppalLOCATE is not feasible due to its cost, as it can quickly become

prohibitively expensive.

An open-source, free option is Typesense [10]. Typesense is described on their website

as the “open source alternative to Algolia.” [10] Typesense can be erected on a server, and as

long as the server has a public URL, it can be accessed and queried for items on the server.

Some of the features of Typesense include support for fuzzy search, typo tolerance, and

synonym suggestions. It also offers advanced query capabilities, such as filtering and sorting.

Additionally, Typesense has a clean and easy-to-use API that makes it simple to integrate into

the application. This is currently how AppalLOCATE’s search engine is implemented and

will be discussed further in chapter III.

6

C. Cross-Platform Development

It was apparent early on that AppalLOCATE would serve most users best as a mobile

application. However, a web-based application was also necessary to facilitate more intricate

functions such as bulk additions and inventory management. This section describes the issues

involved in building applications with mobile and web app UI options.

1) Separate Native Applications: While the obvious solution was to create both a web and

mobile version of the app from scratch, this is more complicated than it sounds. Web

development is often accomplished by combining HTML, CSS, and JavaScript to create web

pages that users can interact with. However, this process can be long and cumbersome, as it

involves creating code in all three languages to create a website.

Additionally, a mobile app would still have to be created completely separately from the

web application. The development of native apps for each platform presented a further

obstacle given the varying programming languages used by Apple’s iOS (Swift) and Google’s

Android (Kotlin/Java). This brings the number of languages needed to at least five, which can

get complicated when trying to implement the same features across all platforms.

2) Reactive Websites: Reactive web frameworks are an attempt at solving the problem of

having to use HTML, CSS, and JavaScript for web projects by bringing them under a

common framework. While reactive websites still use these three languages, they organize

them in a single codebase that is more easily maintained by developers. Some examples of

reactive web frameworks are Vue.js and Angular.

Another problem these reactive websites try to solve is displaying content on

different-sized screens. Since websites can be accessed from a variety of different devices

with varying screen sizes, they need to be able to render well on multiple screens. Websites

designed with just HTML, CSS, and JavaScript often do not render well on smaller devices,

but reactive websites will shrink the content dynamically to fit smaller screens. This allows

for smaller, mobile devices to access the same sites that computers with large monitors can.

7

However, a reactive website is an inadequate substitute for a mobile version, which is able to

take advantage of features embedded in mobile operating systems, such as Bluetooth.

Therefore, AppalLOCATE needs to be a mobile app running on the specific mobile device’s

operating system.

3) Progressive Web Apps: While reactive frameworks are designed from a web application

perspective, progressive web apps (PWAs) are designed more from a mobile application

perspective. PWAs are meant to be designed in a single web codebase and then “installed”

onto a device through a web browser. Ionic, Polymer, and React.js fall into this category due

to being focused on creating these cross-platform applications.

PWAs are the newest of the technologies discussed, and therefore do not completely

support some operations. Notifications are a big hurdle for PWAs, as iOS does not support

being able to send a notification from these applications. The installation of PWAs also does

not work on iOS, as it does not support creating a home screen shortcut that will open the

application. While PWAs will eventually have these features and be able to be used to create

applications that can instantly run independent of the operating system, the technology is

currently not in a state to create a production-level application like AppalLOCATE.

4) Cross-Platform Native Apps: Creating cross-platform native apps is similar to creating

applications in their native programming language, but instead exports code written in one

framework out to native languages. The code for the app is written in a specific web language

or framework and then uses an extra tool to convert that code into the equivalent instructions

in the mobile native language. For AppalLOCATE, this looks like converting Vue.js code into

Swift code for iOS and Native Java/Kotlin code for Android. There are several options for

tools that do this translation.

Apache Cordova [2] is a free and open-source framework created in 2009 that allows you

to create hybrid mobile applications easily using HTML, CSS, and JavaScript. Cordova offers

plenty of pre-built plugins that give developers access to native device functionalities, such as

the camera or accelerometer, in a web-based application. It can create a cross-platform mobile

8

app that can be deployed on any operating system, including iOS, Android, and the web,

using one programming language. Cordova is also highly versatile and integrates with Vue.js,

making it a potentially good choice for AppalLOCATE.

While on paper, Cordova would be a good fit for use in AppalLOCATE, many of its APIs

have been deprecated as of 2021. The current version of Cordova was released in December

2021, and any other updates have and will continue to be bug fixes for the versions of iOS and

Android from 2021. Although using a deprecated system is possible for new products, it is

highly discouraged in most scenarios. This is because many of the technologies used in the

deprecated system can be old and sometimes broken, which would make it more difficult to

use in production. For this reason, another framework was desired.

The recommended successor to Cordova is a tool named Capacitor. Capacitor [8] is

another free and open-source tool used to create cross-platform web and mobile applications.

It allows developers to build out the application as a universal application that can then be

ported to iOS, Android, and the web, very similarly to Cordova. The difference between the

tools comes in their intent. Cordova is more focused on creating mobile applications, whereas

Capacitor describes itself as having a “web first” approach [8]. It also integrates

mobile-friendly APIs directly in the framework, allowing developers to call these APIs on the

web version and have them converted to their respective codebase for mobile platforms.

These features allow for Capacitor to be used in AppalLOCATE’s development, as it

allows for a focus on a web version of the application and an easy export into mobile versions.

How Capacitor is specifically used in AppalLOCATE is discussed more in chapter III.

9

III. DESIGN & IMPLEMENTATION

AppalLOCATE is separated into a client-side that encapsulates both the web and mobile

versions of the application and a server-side that handles managing the data that users submit.

While some work was done on both in [15], substantial work has been done to improve them

and extend their functionality for this thesis. This chapter will discuss the design changes that

have been made to the client-side to accommodate the mobile version of AppalLOCATE and

the development of a search engine and proximity tracing for the server-side.

A. Website UI Design Changes

While the prototype of the web version of AppalLOCATE was completed in August

2022, more work needed to be done to polish the application. This spurred some design

changes to better accommodate the application’s users. Some of these changes included

updating AppalLOCATE’s logo, changing the item list page, and adding a search bar to the

top of the page.

1) Logo Enhancements: Before doing any substantial work on AppalLOCATE, a meeting

was conducted with Appalachian State University’s Intellectual Property (IP) council. It was

determined after the meeting that AppalLOCATE would continue to be completely owned by

the author and could be licensed out as necessary. That decision caused discussions about

licensing the software to other universities or institutions in the future, which necessitated a

change in branding AppalLOCATE.

10

The first change that users will notice when accessing AppalLOCATE is the change in

the logo. This was necessary for the situation that AppalLOCATE is used on other campuses

in the future. Fig. 2 shows what AppalLOCATE’s logo used to look like, compared to the new

logo in Fig. 1.

Fig. 1. New AppalLOCATE logo. Fig. 2. Old AppalLOCATE logo.

While the magnifying glass and the “LOCATE” part of the name are not meant to

change, “Appal” can change to suit any institution that ends up using the technology. Since

“Appal” refers to Appalachian State University, it makes sense that others would not want to

use this naming scheme. As such, the “Appal” can be switched out for a similar naming

scheme and the colors can be changed to reflect the institution.

11

Fig. 3. AppalLOCATE icon.

The magnifying glass can also be used

as a simple icon to refer to the application

(Fig. 3), such as in the favicon (the icon that

shows up in the browser tab) of the website.

2) Item List Edits: Another change with the design of the application is the item lists. In the

previous implementation, the item list was displayed as a cascading list of items stretched

horizontally across the screen, as seen in Fig. 4.

Fig. 4. Old list design.

12

Now, the item list is displayed as a list of cards that change orientation based on the

width of the device’s screen, as demonstrated by Fig. 5 and Fig. 6. This allows for the space in

the application to be better allocated to show more items to the user, as well as allowing for a

cleaner pagination system.

Fig. 5. New list design on a narrow screen. Fig. 6. New list design on a wide screen.

Fig. 7. Pagination bar.

Items now are limited to twelve per

page, with users being able to select the page number

in the pagination bar at the bottom of the list to decide

which page of results they would like to see (Fig. 7).

13

The information that a user is able to input about an item has also changed. This is

influenced by the fields that are stored in Firebase, whose realtime database option is being

used as AppalLOCATE’s backend to house lost, found, and recovered item data. Since

AppalLOCATE actually keeps track of lost items, items that have been found and are

recoverable, and recovered items, it has three different “buckets” that these items go into. All

three hold the same information about an item, which can be seen in Table I.

TABLE I
Final Firebase Item Data

Article Type Date Submitted Date Returned
Item Name Item Description Item Notes
Item Images Current Location Found Location
Listing’s Last Modified Date Listing Tags Item Value
Who Found the Item Make Model
Unique ID of Listing Unique ID of User that Recovery Identification
Location Coordinates Submitted Item Information

This information can be seen on each found item listing in AppalLOCATE for which the

user has the proper authorization. More potential Firebase fields are discussed in chapter VI,

and authenticating users to view all fields in AppalLOCATE is covered in section E.

3) Search Bar: The item list pages also coordinate with the new searching feature, which can

be accessed by clicking the magnifying glass at the top right of the page (Fig. 8). The

implementation of the searching and pagination system uses the Typesense search service.

Fig. 8. Search bar.

14

B. Typesense & Searching

The searching and pagination systems are made possible by Typesense, an open-source

search engine [10]. Typesense has an online pay-as-you-go option called Typesense Cloud

that allows developers to index items in their database. However, it also has a free version that

can be run and accessed from a developer-hosted server. Oracle’s Cloud Infrastructure [7] was

used to build this server.

Oracle Cloud has a free tier that developers can use to create virtual machines with a

limited amount of resources. The configuration of the server for AppalLOCATE is shown in

Fig. 9 and includes a standard Ubuntu Linux distribution, 1 CPU, 1 GB of memory, and a

nominal 60 MB network connection. Since this server only runs Typesense, these are

sufficient resources for its usage in AppalLOCATE. However, it is not difficult to reprovision

and add additional resources later if necessary.

Fig. 9. Typesense server configuration.

15

Typesense is accessible through an API endpoint. This allows AppalLOCATE to make

HTTP requests to this Typesense endpoint whenever an item needs to be indexed, removed, or

searched. Items are indexed and removed from Typesense simultaneously with the Firebase

storage service, but the search function is separated and shown in Fig. 10.

Fig. 10. Search function.

Fig. 11. Example Typesense query.

This function uses the Typesense

library to access the “document” holding the items

collection, and then searches that collection for the

user’s search terms, which are shared in the params

variable. These queries are formatted in a specific way

as required by Typesense and usually specify the field

that is being searched against (item name, date found,

tags, etc.) and what is being put into the search bar. An example query is shown in Fig. 11,

which shows how to search for all items that have the “important” tag. This query would be

passed in the params variable to the sortBy function and then sent to the Typesense endpoint

to search for important items. When the Typesense search function finishes, the results are

sent to a lambda function to be processed as a dictionary. The function saves all of the “hits”

16

into an array that will contain all of the important items, and then sends this array to the

setItems function to update the local list of items shown to the user. The search results are

also sent to the setLastSearch function to be stored for paginating through the results.

C. Web Configuration

Although the prototype of AppalLOCATE was set up using a combination of GitHub and

Netlify, more work had to be done to bring the application to a production state. Previously,

the application had a randomly assigned hostname that Netlify assigned, but it became evident

that the application would need a custom hostname for a unique identity to avoid issues with

Cross-Origin Resource Sharing’s (CORS) same-origin security policy. This same-origin

security policy requires that modern browsers perform all API requests from the same origin,

which is the hostname of the application.

1) Domain Setup: The domain name chosen had to be able to host both the main

AppalLOCATE site and all of the API endpoints that it uses since JavaScript expects the

hostname of a website and an API to be the same. This resulted in the acquisition of

appallocate.com, the current hostname for AppalLOCATE.

Port numbers and subdomains separate the different services running on this host. For

example, the host to access both the main site and Typesense are the same (appallocate.com),

but they both are accessible via different subdomains (www vs search). This allows for the

application to not have “cross-origins” in order to obtain the data that is necessary to run

(populating item lists, indexing items, etc.). It is easy to accomplish in Netlify, the service that

is building out and hosting the production version of AppalLOCATE.

2) Netlify Usage: Netlify is a hosting service used to host web services directly from Git [3].

It also allows developers to manage the subdomains and ports of their applications easily. In

AppalLOCATE’s case, this is the service that manages the different subdomains that the

application needs. Although the Typesense and FingerprintJS (discussed in section E) servers

are not running on Netlify like the main site is, it is possible to redirect their respective IPs to

17

refer to specific appallocate.com subdomains. Netlify also makes it easy to obtain an SSL

certificate for the application so that it can run over HTTPS instead of HTTP, which increases

the security of the site and is mandatory for making API requests.

Netlify also has a feature that allows developers to make branch deployments. These

branches directly correlate to branches in GitHub, which are a means of encapsulating

different groups of features during development. This feature allows AppalLOCATE to have a

separate development version that is assigned to a specific subdomain (dev) that has beta

features that have not yet been tested in a production environment. Once these features are

thoroughly tested on dev.appallocate.com, the changes on the dev branch can be merged into

the production (prod) branch, which tells Netlify to rebuild the version of AppalLOCATE

hosted at appallocate.com. Netlify also has analytical features that are not yet utilized in the

current version of AppalLOCATE, and are discussed further in chapter VI.

18

D. Mobile Development

As stated previously, Capacitor was used to export the web version of AppalLOCATE to

both an iOS and Android version of the app. While using Capacitor is straight-forward, a few

design changes were needed in order to make AppalLOCATE display and operate correctly in

a mobile environment. Further improvements on the mobile version are discussed in

chapter VI, such as Bluetooth and GPS.

1) Capacitor Usage: Building out the mobile version of the application is easy to do with

Capacitor. All that is required is running a few commands that specify which mobile

operating system to build out to:

npx capacitor add [ios|android]

npx capacitor sync [ios|android]

npx capacitor open [ios|android]

First, the necessary dependencies are installed for the respective operating system with

the capacitor add command. This step only has to be done once, as after it has those

dependencies, it can now export out to the required operating system. This export is

accomplished by running the capacitor sync command, which begins the process of exporting

all of the Vue.js code in the project out to Swift and Kotlin code. If any updates are made to

the web version, the Capacitor sync must be executed again to synchronize the web and

mobile versions. After the builds are complete, the respective projects can be opened with the

capacitor open command. This will open the project in either Xcode or Android Studio

depending on the operating system specified. At this point, there is an application that can

now be configured to deploy to the operating system’s respective app stores. Additionally, any

changes that can only be made in the operating system’s native programming language are

now also possible. Capacitor provides specific files that can still be modified to add in native

code that will not be overwritten on a subsequent sync.

19

2) AppalLOCATION: AppalLOCATION is a digital tracing protocol (DCP) that is provided

by AppalLOCATE to assist users with finding their items faster. AppalLOCATION currently

uses Radar [12] to grab the latitude and longitude of users and items. Radar is used because it

interfaces with Capacitor, allowing for just one API to be used in both the web and mobile

versions of AppalLOCATE. Since Radar needs location service permissions in order to

operate, users are prompted to enable location services whenever AppalLOCATION is

enabled. Since location services are not required for every operation in AppalLOCATE

though, these prompts are limited to only these situations when AppalLOCATION is used.

Radar is used to grab the latitude and longitude of an item when a user submits a found

item, as shown in Fig. 12.

Fig. 12. Get location coords function.

The API is sent the location specified by the user when creating the item listing and the user’s

current location to obtain the coordinates for the item. If the user is indoors, the item listing

just uses the geolocation of the building, since GPS systems can be inaccurate indoors. In this

case, the user’s location (who is assumed to be in Boone) is used to grab the closest address’s

coordinates, which helps Radar be as precise as possible. Otherwise, if the user is outside, the

item will take the user’s current coordinates to be more accurate. Typesense’s “geopoint”

datatype can then be used to store these coordinates, which allows for location-based queries

to be done on the item. This is later used by AppalLOCATION to tell a user what items are in

their immediate vicinity. How users can use this feature is discussed in section A.

20

3) App Deployment: The mobile application implementation is made publicly available for

users by submitting the finished apps to their respective app stores, which are Apple’s App

Store and the Google Play Store. Deploying AppalLOCATE to the Play Store is completed

and is described in this section. Deployment to the App Store is discussed as future work in

chapter VI.

Deploying an application to the Google Play Store is made possible using the Google

Play Console [6]. A small, one-time fee has to be paid to access the console, but then all of

the resources to release the application are provided to developers. The Google Play Console

provides a list of criteria that must be met to submit the first release of an application. These

criteria are shown in Fig. 13.

Fig. 13. Google Play Console checklist.

21

Most of the requirements are straightforward, like specifying if the application is going

to be showing users ads, providing news to users, or is going to be used as a COVID-19

proximity tracing app, none of which AppalLOCATE is doing. The more applicable

requirements are setting a privacy policy, content rating, and disclosing data safety

information.

A privacy policy is a legal form that specifies how an application uses user data. This is

necessary to prevent malicious applications from using user data inappropriately without the

user’s knowledge and adds an extra layer of security. Creating a privacy policy is rather easy

given the correct tools, such as TermsFeed [13]. AppalLOCATE uses TermsFeed to create a

privacy policy, which is being hosted at appallocate.com/privacy. Providing the URL to the

privacy policy is required by Google so that they can consider it during their verification

process.

Content rating is a way to determine what age range of users should be using an

application. For apps and games, the content rating given is usually determined by the

International Age Rating Coalition (IARC), which will assign the appropriate age restrictions

to these applications internationally.

Google determines content rating by requiring developers to complete a questionnaire

that will assign the application a rating based on what kind of content is present in it.

AppalLOCATE has been determined to be rated “E for Everyone” in the Americas (Fig. 14),

as nothing in the application is harmful to younger demographics, although it is not

specifically designed for them.

Fig. 14. AppalLOCATE’s content rating.

Google requires that all submitted apps disclose what data they collect on a user’s device

upfront so that they can consider it during their review. This can be information like the user’s

22

name, email address, photos, or even physical address. This is to prevent any malicious

applications from being approved on the Google Play Store. If Google determines a mismatch

between the information provided by the developer and what is actually in the application it

will not be allowed on the store. Since AppalLOCATE collects the location and unique

identifier of a user’s device when they submit an item and allows users to log into the

application with their email address and password, this has to be disclosed to Google.

Fig. 15. Google Play Store listing.

Since AppalLOCATE

has undergone review and been approved, it

can now be listed on the Google Play Store.

If a user searches for “AppalLOCATE”

on the Google Play Store, they will now see

the public listing for the app and be able to

install it on their Android device, as shown

in Fig. 15. This allows any member of the

Appalachian State University community to

use the application and take advantage of the

mobile features that have been implemented.

Use cases for the web and mobile versions

of the application are discussed further in

chapter IV.

23

E. Security & Authentication

While AppalLOCATE is public for anyone in the Appalachian State University

community to use, not everyone should have access to all of the information in the

application. If all of the information about items were public knowledge, it would be easy for

someone to fraudulently look at the item list and claim that any item present on the list is

theirs. This fraud concern was discovered during requirements gathering with the

Appalachian State Police Department (APD), and influenced the implementation of an

authentication service into AppalLOCATE.

For recovered items, standard AppalLOCATE users should only be able to see the name

of an item, where it is being kept, and when it was found. Office users can instead look at the

full extended information about an item. This will allow these standard users to go to the

location where the items are being held and describe their lost items to office personnel, who

will be able to determine if the information the user is giving them matches an item’s full

description.

The authentication system also needs to be able to be generalized so that any institution

that uses AppalLOCATE in the future can also authenticate their users. At Appalachian State

University, SAML 2.0 is used to authenticate users through our single sign-on service,

Shibboleth. To get a user’s information from Shibboleth, AppalLOCATE needed to be able to

send SAML 2.0 requests. SAML 2.0 requires that a personal and private key be generated for

the application that will be using it, and the identity service will then check against the

personal key to make sure that the application is authorized to obtain the user’s information.

Once the information is acquired for a user, AppalLOCATE can determine if the user is in an

Active Directory (AD) group named CS-AppalLocate-Admins that is allowed to view

extended item information.

This group currently includes department office personnel, APD office workers, and

authorized student union workers. This group can be added to and removed without impacting

AppalLOCATE, which will allow any new users to then be able to access the extended

24

information. From the user’s perspective, they are logging into the service with their

Appalachian State University credentials and authorizing the request with Duo Mobile, much

like any other service at the University. This process is shown in section B.

Whenever they are finished viewing the information, the user can choose to log out of the

instance of the application they are using, otherwise, they will be logged out after a

determined amount of time.

As previously mentioned, this authentication system has been generalized so that any

institution can take advantage of it. A developer would just need to reroute the keys in the

application to their own Shibboleth equivalent, which will then allow them to authenticate

users in a similar way.

Sometimes, there is also a need to be able to determine which users have submitted what

items, such as allowing the user submitting an item to modify the listing. Since

AppalLOCATE is primarily designed to not need to be logged into by standard users, using

Shibboleth to identify these users is undesirable. This inspired the usage of FingerprintJS [9]

to give users a hashed, unique user ID that is generated based on instance information (serial

number, browser, etc.). Since this user ID is created on the device and then sent up with an

item submission, AppalLOCATE has no way to trace the ID back to a user. These IDs persist

and allow users to be identified as the publisher of an item listing without having to log into

AppalLOCATE, so long as the user uses the same device.

25

IV. APP USES & PROCEDURES

Since some features of the application are exclusive to office personnel, AppalLOCATE

has two different use cases for two different kinds of users. These two types of users in

AppalLOCATE are standard and office users. Standard users are any students, custodians, or

visitors to Appalachian State University’s campus that may download the application to report

their lost items or see if they have been found and reported to an office space. These users can

only see basic information about items held in offices to mitigate false item claims. Office

users are the office personnel who will have full access to held items’ information, including

images and full descriptions. This chapter will discuss both of these types of users and how it

is recommended that they use AppalLOCATE.

A. Standard Users

This section will describe the steps for standard users to accomplish certain goals with

AppalLOCATE. It is expected that standard users use the mobile version of AppalLOCATE,

but these steps will apply to the web version as well. The basic actions that standard users can

perform are creating listings for their lost items and reporting found items.

26

Fig. 16. Submit lost item listing.

To create a bulletin board listing for

a lost item, a standard user will open AppalLOCATE

and navigate to the “Submit Lost Item” page from

the navigation bar (Fig. 16). The user can then fill out

the information about their item as shown in Fig. 17,

including a name for the item, where and when it was

last seen on campus, a short description of the item,

and the user’s name. The only information that is

required to post the listing is the name of the item and

where and when the user last had the item. If “Submit another” is checked on the page, some

of the information about the previous item will persist to make it easier to submit multiple

items in succession.

Fig. 17. Submit lost item page.

27

Fig. 18. Lost item bulletin listing.

The items on the bulletin board can also be

viewed from the “Lost Item Bulletin” page (Fig. 18).

This will show all of the items that have been reported

missing, as shown in Fig. 19. This allows users to

view this list and keep their eyes open around campus

for any of these items, which can then be submitted as

found items.

Fig. 19. Lost item bulletin page.

28

Fig. 20. Submit found item listing.

To create a listing for a found item, a standard

user can navigate to the “Submit Found Item” page

from the navigation bar (Fig. 20). The user can then

take a picture of the item that they found and enter

the required information about it. This item will then

be available from the “Found Items” page, shown in

Fig. 21, which can also be accessed from the navigation bar.

Fig. 21. Submit found item page.

29

Fig. 22. Standard user’s found items listing.

The “Found Items” page shows

all items that have been confirmed to be seen

on campus (Fig. 22). A standard user can see

the name of the listing, the date it was found,

and where it currently is if that location is at

a confirmed office location, which is shown

in Fig. 23. This allows the user to identify

if any of their items have been submitted and

go to the appropriate office to give a detailed

description of their item to retrieve it.

Fig. 23. Standard user’s found items page.

30

AppalLOCATION is also available to be used by standard users. AppalLOCATION can

be utilized by the user by clicking the compass icon at the top right corner of AppalLOCATE,

as shown in Fig. 24.

Fig. 24. AppalLOCATION button.

This will immediately

prompt the user to enable location services

for the application, causing a search to be

performed for every item within a 200-foot

radius. This allows users to just look for

items in their immediate vicinity, in case there was a found item reported in the area.

Eventually, users will be able to get push notifications to look out for these found items in

their location, which is discussed in chapter VI.

Fig. 25. Item info listing.

If a user is not sure where to return

an item that has been deemed important,

they can navigate to the “Item Info” page

(Fig. 25). This page (Fig. 26) provides some

basic information about where to return an

important/expensive item so that it can remain safe.

31

Fig. 26. Item info page.

B. Office Users

This section will describe the steps for office users to accomplish certain goals with

AppalLOCATE. It is assumed that office users use the web version of AppalLOCATE, but

these steps apply to the mobile version as well. The basic actions that office users can perform

are creating listings for lost items, reporting found items, viewing detailed information about

submitted items, and moving found items to a recovered state when they are returned to their

owner. Office users can perform all of the actions of standard users, so shared actions have

been consolidated in the previous standard user section.

Fig. 27. Login button.

Office users must first log in by clicking

the “Login” button at the top right of the

page (Fig. 27). Users can log in with their

AppState username and password (Fig. 28),

and the application will confirm that the

user is allowed to use office features. After

logging in, the user will be redirected back

to the AppalLOCATE main page, where office users can now navigate the full application.

32

Fig. 28. Login page.

Fig. 29. Office user’s found items listing.

To view the full information for a lost

item, an office user can open AppalLOCATE

and navigate to the “Found Items” page

from the navigation bar (Fig. 29). The user

will be presented with a different view of the

items from a standard user, which includes

pictures of the items, shown in Fig. 30. To

see more information and edit a listing a user

can click on the “View” button on the item,

which will bring up a popup full of all of the

information entered for the item.

Fig. 30. Office user’s found items page.

33

This information can also be edited by clicking the pencil at the top right of the popup

(Fig. 31), as this will enable each field to be changed and then saved with the “Save” button

(Fig. 32). If the office user wants to mark the item as having been recovered by its owner, the

“Archive” button can be used to do so.

Fig. 31. Found item’s extended view.

34

Fig. 32. Found item’s edit page.

Fig. 33. Recovered items listing.

Historic items that have been marked

as recovered can be viewed by navigating to

the “Recovered Items” page (Fig. 33). This

page (Fig. 34) looks similar to the “Found

Items” page, but individual item information

can no longer be modified on the items.

For record-keeping purposes, the displayed

information for the office user has been

updated to include the recipient of the item.

35

Fig. 34. Recovered items page.

Fig. 35. Reports listing.

AppalLOCATE also allows for office

users to generate reports about the stored

items from the “Reports” page (Fig. 35).

This page (Fig. 36) currently has two

types of reports defined, but can be iterated

upon once new types of reports are desired.

The reports that can be generated are about

all items and items with the “important” tag.

Regardless, the two reports have the same

format, consisting of showing summarized

information about a list of the items, the total number of items, and their total estimated cost.

An example report can be seen in Fig. 37.

36

Fig. 36. Reports page.

Fig. 37. Full item report.

37

V. USER FEEDBACK

A formal usability test was not conducted for AppalLOCATE, but four office users and

standard users each were asked for feedback on the application. This chapter describes the

feedback given for both standard and office use.

Standard users thought that the application was relatively easy to navigate and use.

Standard users had a high likelihood of using the application often for looking for their lost

items on campus. Standard users preferred using AppalLOCATE on mobile devices as

opposed to the web version, which is to be expected due to convenience.

Office users found the layout and presentation of the application easy to understand and

use. The amount that office users would use the application differed depending on office

location, but all thought that the application would see moderate if not frequent use.

Surprisingly, office users also preferred the mobile version of AppalLOCATE over the web

version. This was because of the increased ease of being able to take pictures of items with

mobile phones, but for other lost and found inventory management tasks, the web version was

preferred.

38

VI. CONCLUSION

This thesis has described two fully developed versions of AppalLOCATE that can be

distributed on a wide variety of operating systems. Users can report both items they have lost

and items they have found to the application. This will allow the Appalachian State University

community to help each other and increase the number of items that are returned to their

owners.

AppalLOCATE is also designed to be a tool used by offices to keep track of their lost and

found inventory. The Appalachian Police Department has begun using AppalLOCATE to

monitor its inventory, which coupled with the ability to create reports on the items recovered,

will allow them to more accurately and efficiently take action on these items.

A. Future Work

While AppalLOCATE is now in production, some features could still be added to the

application. These additional features will make AppalLOCATE easier to use for all types of

users and help prolong the development of the product. Other features could also be

discovered upon more widespread usage of the application.

Some of the improvements that have been considered are discussed further below:

• Load balancing on busy servers

While AppalLOCATE is currently not being used by thousands of users across campus,

it has been developed with this possibility in mind. One consideration for this is to load

balance the application. Load balancing is the process of redirecting users to different

39

instances of the application on different servers to lessen the amount of stress on a

single server. This can help increase responsiveness for the end users and make using

the application a better experience. Load balancing is possible through both Netlify and

Oracle Cloud, so both AppalLOCATE and the Typesense server have been prepared to

be load balanced, but it has not been activated.

• Proper searches for all item lists

Currently, the search bar in AppalLOCATE only controls the main found items list.

This is due to the bulletin board and recovered items list not needing to be searched

quite as thoroughly. However, it may be beneficial in the future for the search bar to

work with both of these lists as well once more items have been submitted so that users

can search for any particular item(s).

• Automatic indexing

Since the Typesense server and Firebase backend are not directly connected, items have

to be sent to each individual with two API calls. It may be beneficial in the future to

create a process that will index relevant items into Typesense when a search is made.

This will lessen the number of items that have to be indexed at once and not waste space

on items that are never searched for.

• Populating tags list with relevant suggestions

While currently the tags recommended to users are hardcoded into the application, it

would make sense for an algorithm to eventually suggest relevant tags to a user based

on the item they are submitting. For example, if a user has input information about a

blue book but has not yet entered tags for the item, it could be beneficial to suggest the

tags “blue” and “book” to the user.

• Linking items from the bulletin board and found inventory

Since we have records of all of the found items when users are adding lost items to the

bulletin board, AppalLOCATE could give possible suggested links between a lost item

a user is about to submit and an item already present in the system. This will prevent the

user from submitting an item that might already be present somewhere in the system as

40

well as point the user in the right direction on where their item is.

• Make login session persist

If an office user logs into AppalLOCATE, they will only be logged into that particular

instance of the application. If they refresh or close the application, when it is next

opened it will not know who was logged in previously. Cookies are a way to store small

pieces of session information about websites in browsers and could be used to store

users’ login information temporarily so they do not have to log in as often.

• Make images editable after submission

A flaw with the way that images are currently uploaded to items is that they cannot be

directly edited after the item has been submitted. Instead, if a user wants to modify the

images on an item at all, they will have to upload new images and completely remove

the previous images from the item. Ideally, users will be able to individually remove

existing images on items and add more images independently of these existing images.

• Proximity notifications

AppalLOCATION currently allows users to search for items within a 200 ft radius of

them, but it can be taken a step further by sending push notifications to users’ mobile

devices when they are passing by a reported item’s found location. This will give a user

a chance to confirm whether an item is still present in the location when they are already

there, lessening the burden on them and helping to keep our location records up-to-date.

• Utilize Netlify analytics

Netlify has built-in analytic tools that can be used to monitor website traffic, location

metrics, and other data. This could be useful to utilize in AppalLOCATE to measure

how many total users and unique users are using the application and graph these metrics

over time.

• More in-depth user tests

Although informal feedback was gathered from users about the usability of

AppalLOCATE, more in-depth user tests and feedback would be required to shape the

application into the best that it can be. These tests would also quantify the usefulness of

41

certain features that have already been implemented and potentially identify alternative

features that would be better suited for the application.

• Apple App Store deployment

While the deployment to the Google Play Store is completed, deployment to Apple’s

App Store is more difficult. Specifically, Apple has an annual $99 for their Apple

Developer Program, which makes it difficult to justify uploading it to the App Store. If

funding is provided to develop AppalLOCATE further, this fee could be paid to

distribute AppalLOCATE to iOS users.

42

BIBLIOGRAPHY

[1] Algolia, Site Search & Discovery powered by AI, 2012 (en).

[2] Apache Software Foundation, Apache Cordova, 2009.

[3] Christian Bach, Develop and deploy websites and apps in record time, 2014 (en).

[4] Elastic NV, Elasticsearch: The Official Distributed Search & Analytics Engine, 2010 (en-us).

[5] Google, Firebase, 2011 (en).

[6] , Google Play Console | Google Play Console, 2012 (en).

[7] Michał Tomasz Jakóbczyk, Practical Oracle Cloud Infrastructure: Infrastructure as a Service, Autonomous

Database, Managed Kubernetes, and Serverless, Apress, Berkeley, CA, 2020 (en).

[8] Max Lynch, ionic-team/capacitor, Ionic, 2022. original-date: 2017-11-18T21:38:09Z.

[9] Sergey M., fingerprintjs/fingerprintjs, Fingerprint, 2023. original-date: 2015-02-11T08:49:54Z.

[10] Kishore Nallan, typesense/typesense, Typesense Inc., 2022. original-date: 2017-01-18T08:01:47Z.

[11] NCDHHS, NCDHHS Launches SlowCOVIDNC Exposure Notification App; Available for Download

Today, 2020 (en).

[12] Nick Patrick, radarlabs/capacitor-radar, Radar, 2023. original-date: 2019-08-11T16:14:37Z.

[13] TermsFeed, TermsFeed Privacy Policy Generator, 2012 (en).

[14] Carmela Troncoso, Dan Bogdanov, Edouard Bugnion, Sylvain Chatel, Cas Cremers, Seda Gürses,

Jean-Pierre Hubaux, Dennis Jackson, James R. Larus, Wouter Lueks, Rui Oliveira, Mathias Payer, Bart

Preneel, Apostolos Pyrgelis, Marcel Salathé, Theresa Stadler, and Michael Veale, Deploying decentralized,

privacy-preserving proximity tracing, Communications of the ACM 65 (August 2022), no. 9, 48–57.

[15] Derek Clark Wilson, LOST AND FOUND APPLICATION: APPALLOCATE (July 2022), 66 (en).

43

VITA

Derek Clark Wilson was born in Wilson, North Carolina on September 1, 2001. They

grew up on computers, making pursuing a Computer Science degree seem natural. They

entered Appalachian State University in August 2019 after graduating from high school

earlier in the year. They graduated with a B.S. in Computer Science from Appalachian State

University in 2022 and with an M.S. in Computer Science in 2023. They worked in IT

services on campus through both degrees and aspire to continue within the technology field in

the future.

44

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background
	Proximity Tracing
	Search Engines
	Integrated Storage & Search
	Separated Storage & Search

	Cross-Platform Development
	Separate Native Applications
	Reactive Websites
	Progressive Web Apps
	Cross-Platform Native Apps

	Design & Implementation
	Website UI Design Changes
	Logo Enhancements
	Item List Edits
	Search Bar

	Typesense & Searching
	Web Configuration
	Domain Setup
	Netlify Usage

	Mobile Development
	Capacitor Usage
	AppalLOCATION
	App Deployment

	Security & Authentication

	App Uses & Procedures
	Standard Users
	Office Users

	User Feedback
	Conclusion
	Future Work

	Bibliography
	Vita

